Essentially optimal computation of the inverse of generic polynomial matrices
نویسندگان
چکیده
منابع مشابه
Essentially optimal computation of the inverse of generic polynomial matrices
We present an inversion algorithm for nonsingular n × n matrices whose entries are degree d polynomials over a field. The algorithm is deterministic and, when n is a power of two, requires O (̃n3d) field operations for a generic input; the soft-O notation O ̃indicates some missing log(nd) factors. Up to such logarithmic factors, this asymptotic complexity is of the same order as the number of dis...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملDrazin inverse of one-variable polynomial matrices
There is proposed a representation of the Drazin inverse of a given polynomial square matrix, based on the extension of the Leverrier-Faddeev algorithm. Also, an algorithm for symbolic computation of the Drazin inverse of polynomial matrix is established. This algorithm represents an extension of the papers [5], [7] and a continuation of the papers [8], [9], [10]. The implementation is develope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2005
ISSN: 0885-064X
DOI: 10.1016/j.jco.2004.03.005